2016/17 MATH2230B/C Complex Variables with Applications Problems in HW 4
 Due Date on 6 Apr 2017

All the problems are from the textbook, Complex Variables and Application (9th edition).

$1 \quad$ P. 237

1. Find the residue at $z=0$ of the function
(a) $\frac{1}{z+z^{2}}$;
(b) $z \cos \left(\frac{1}{z}\right)$;
(c) $\frac{z-\sin z}{z}$;
(d) $\frac{\cot z}{z^{4}}$;
(e) $\frac{\sinh z}{z^{4}\left(1-z^{2}\right)}$.
2. Use Cauchy's residue theorem (Sec. 76) to evaluate the integral of each of these functions around the circle $|z|=3$ in the positive sense:
(a) $\frac{\exp (-z)}{z^{2}}$;
(b) $\frac{\exp (-z)}{(z-1)^{2}}$;
(c) $z^{2} \exp \left(\frac{1}{z}\right)$;
(d) $\frac{z+1}{z^{2}-2 z}$.

$2 \quad$ P. 238

4. Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of each of these functions around the circle $|z|=2$ in the positive sense:
(a) $\frac{z^{5}}{1-z^{3}}$;
(b) $\frac{1}{1+z^{2}}$;
(c) $\frac{1}{z}$.

$3 \quad$ P. 242

1. In each case, write the principal part of the function at its isolated singular point and determine whether that point is a removable singular point, an essential singular point, or a pole:
(a) $z \exp \left(\frac{1}{z}\right)$;
(b) $\frac{z^{2}}{1+z}$;
(c) $\frac{\sin z}{z}$;
(d) $\frac{\cos z}{z}$;
(e) $\frac{1}{(2-z)^{3}}$.
2. Show that the singular point of each of the following functions is a pole. Determine the order m of that pole and the corresponding residue B.
(a) $\frac{1-\cosh z}{z^{3}}$;
(b) $\frac{1-\exp (2 z)}{z^{4}}$;
(c) $\frac{\exp (2 z)}{(z-1)^{2}}$.

$4 \quad$ P. 247

3. In each case, find the order m of the pole and the corresponding residue B at the singularity $z=0$:
(a) $\frac{\sinh z}{z^{4}}$;
(b) $\frac{1}{z\left(e^{z}-1\right)}$.
4. Find the value of the integral

$$
\int_{C} \frac{3 z^{3}+2}{(z-1)\left(z^{2}+9\right)} \mathrm{d} z,
$$

taken counterclockwise around the circle (a) $|z-2|=2$; (b) $|z|=4$.
5. Find the value of the integral

$$
\int_{C} \frac{\mathrm{~d} z}{z^{3}(z+4)},
$$

taken counterclockwise around the circle (a) $|z|=2$; (b) $|z+2|=3$.

$5 \quad$ P. 254

5. Let C denote the positively oriented circle $|z|=2$ and evaluate the integral
(a) $\int_{C} \tan z \mathrm{~d} z$;
(b) $\int_{C} \frac{\mathrm{~d} z}{\sinh 2 z}$.
6. Show that

$$
\int_{C} \frac{\mathrm{~d} z}{\left(z^{2}-1\right)^{3}+3}=\frac{\pi}{2 \sqrt{2}}
$$

where C is the positvely oriented boundary of the rectangle whose sides lie along the lines $x= \pm 2, y=0$ and $y=1$.
Suggestion: By observing that the four zeros of the polynomial $q(z)=\left(z^{2}-1\right)^{3}+3$ are the square roots of the numbers $1+ \pm \sqrt{3} i$, show that the reciprocal $1 / q(z)$ is analytic inside and on C except at the points

$$
z_{0}=\frac{\sqrt{3}+i}{\sqrt{2}} \quad \text { and } \quad-\overline{z_{0}}=\frac{-\sqrt{3}+i}{\sqrt{2}} .
$$

Then apply Theorem 2 in Sec. 83.

$6 \quad$ P. 264

Use residues to derive the integration formulas in 2 . and 4.
2. $\int_{0}^{\infty} \frac{\mathrm{d} x}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{4}$.
4. $\int_{0}^{\infty} \frac{x^{2} \mathrm{~d} x}{x^{6}+1}=\frac{\pi}{6}$.
9. Use a residue and the contour

$$
C=[0, R] \cup\left\{R e^{i \theta}: 0 \leq \theta \leq 2 \pi / 3\right\} \cup\left\{r e^{i 2 \pi / 3}: 0 \leq r \leq R\right\} \quad \text { (counterclockwise) }
$$

where $R>1$, to establish the integration formula

$$
\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{3}+1}=\frac{2 \pi}{3 \sqrt{3}} .
$$

